AWS Certified Solutions Architect - Professional

1. A company collects data for temperature, humidity, and atmospheric pressure in cities across multiple continents. The average volume of data that the company collects from each site daily is 500 GB. Each site has a high-speed Internet connection.

The company wants to aggregate the data from all these global sites as quickly as possible in a single Amazon S3 bucket. The solution must minimize operational complexity. Which solution meets these requirements?

- A. Turn on S3 Transfer Acceleration on the destination S3 bucket. Use multipart uploads to directly upload site data to the destination S3 bucket.
- B. Upload the data from each site to an S3 bucket in the closest Region. Use S3 Cross-Region Replication to copy objects to the destination S3 bucket. Then remove the data from the origin S3 bucket.
- C. Schedule AWS Snowball Edge Storage Optimized device jobs daily to transfer data from each site to the closest Region. Use S3 Cross-Region Replication to copy objects to the destination S3 bucket.
- D. Upload the data from each site to an Amazon EC2 instance in the closest Region. Store the data in an Amazon Elastic Block Store (Amazon EBS) volume. At regular intervals, take an EBS snapshot and copy it to the Region that contains the destination S3 bucket. Restore the EBS volume in that Region.

Answer(s): A

2. A company needs the ability to analyze the log files of its proprietary application. The logs are stored in JSON format in an Amazon S3 bucket. Queries will be simple and will run on-demand. A solutions architect needs to perform the analysis with minimal changes to the existing architecture.

What should the solutions architect do to meet these requirements with the LEAST amount of operational overhead?

A. Use Amazon Redshift to load all the content into one place and run the SQL queries as needed.

- B. Use Amazon CloudWatch Logs to store the logs. Run SQL queries as needed from the Amazon CloudWatch console.
- C. Use Amazon Athena directly with Amazon S3 to run the queries as needed.
- D. Use AWS Glue to catalog the logs. Use a transient Apache Spark cluster on Amazon EMR to run the SQL queries as needed.

Answer(s): C

3. A company uses AWS Organizations to manage multiple AWS accounts for different departments. The management account has an Amazon S3 bucket that contains project reports. The company wants to limit access to this S3 bucket to only users of accounts within the organization in AWS Organizations.

Which solution meets these requirements with the LEAST amount of operational overhead?

- A. Add the aws:PrincipalOrgID global condition key with a reference to the organization ID to the S3 bucket policy.
- B. Create an organizational unit (OU) for each department. Add the aws:PrincipalOrgPaths global condition key to the S3 bucket policy.
- C. Use AWS CloudTrail to monitor the CreateAccount, InviteAccountToOrganization, LeaveOrganization, and RemoveAccountFromOrganization events. Update the S3 bucket policy accordingly.
- D. Tag each user that needs access to the S3 bucket. Add the aws:PrincipalTag global condition key to the S3 bucket policy.

Answer(s): A

4. An application runs on an Amazon EC2 instance in a VPC. The application processes logs that are stored in an Amazon S3 bucket. The EC2 instance needs to access the S3 bucket without connectivity to the internet.

Which solution will provide private network connectivity to Amazon S3?

- A. Create a gateway VPC endpoint to the S3 bucket.
- B. Stream the logs to Amazon CloudWatch Logs. Export the logs to the S3 bucket.

- C. Create an instance profile on Amazon EC2 to allow S3 access.
- D. Create an Amazon API Gateway API with a private link to access the S3 endpoint.

Answer(s): A

- **5.** A company is hosting a web application on AWS using a single Amazon EC2 instance that stores user-uploaded documents in an Amazon EBS volume. For better scalability and availability, the company duplicated the architecture and created a second EC2 instance and EBS volume in another Availability Zone, placing both behind an Application Load Balancer. After completing this change, users reported that, each time they refreshed the website, they could see one subset of their documents or the other, but never all of the documents at the same time. What should a solutions architect propose to ensure users see all of their documents at once?
 - A. Copy the data so both EBS volumes contain all the documents
 - B. Configure the Application Load Balancer to direct a user to the server with the documents
 - C. Copy the data from both EBS volumes to Amazon EFS. Modify the application to save new documents to Amazon EFS
 - D. Configure the Application Load Balancer to send the request to both servers. Return each document from the correct server

Answer(s): C

- **6.** A company uses NFS to store large video files in on-premises network attached storage. Each video file ranges in size from 1 MB to 500 GB. The total storage is 70 TB and is no longer growing. The company decides to migrate the video files to Amazon S3. The company must migrate the video files as soon as possible while using the least possible network bandwidth. Which solution will meet these requirements?
 - A. Create an S3 bucket. Create an IAM role that has permissions to write to the S3 bucket. Use the AWS CLI to copy all files locally to the S3 bucket.
 - B. Create an AWS Snowball Edge job. Receive a Snowball Edge device on premises. Use the Snowball Edge client to transfer data to the device. Return the device so that AWS can import the data into Amazon S3.

- C. Deploy an S3 File Gateway on premises. Create a public service endpoint to connect to the S3 File Gateway. Create an S3 bucket. Create a new NFS file share on the S3 File Gateway. Point the new file share to the S3 bucket. Transfer the data from the existing NFS file share to the S3 File Gateway.
- D. Set up an AWS Direct Connect connection between the on-premises network and AWS. Deploy an S3 File Gateway on premises. Create a public virtual interface (VIF) to connect to the S3 File Gateway. Create an S3 bucket. Create a new NFS file share on the S3 File Gateway. Point the new file share to the S3 bucket. Transfer the data from the existing NFS file share to the S3 File Gateway.

Answer(s): B

7. A company has an application that ingests incoming messages. Dozens of other applications and microservices then quickly consume these messages. The number of messages varies drastically and sometimes increases suddenly to 100,000 each second. The company wants to decouple the solution and increase scalability.

Which solution meets these requirements?

- A. Persist the messages to Amazon Kinesis Data Analytics. Configure the consumer applications to read and process the messages.
- B. Deploy the ingestion application on Amazon EC2 instances in an Auto Scaling group to scale the number of EC2 instances based on CPU metrics.
- C. Write the messages to Amazon Kinesis Data Streams with a single shard. Use an AWS Lambda function to preprocess messages and store them in Amazon DynamoDB. Configure the consumer applications to read from DynamoDB to process the messages.
- D. Publish the messages to an Amazon Simple Notification Service (Amazon SNS) topic with multiple Amazon Simple Queue Service (Amazon SOS) subscriptions. Configure the consumer applications to process the messages from the queues.

Answer(s): D

8. A company is migrating a distributed application to AWS. The application serves variable workloads. The legacy platform consists of a primary server that coordinates jobs across multiple compute nodes. The company wants to modernize the application with a solution that maximizes resiliency and scalability.

How should a solutions architect design the architecture to meet these requirements?

- A. Configure an Amazon Simple Queue Service (Amazon SQS) queue as a destination for the jobs. Implement the compute nodes with Amazon EC2 instances that are managed in an Auto Scaling group. Configure EC2 Auto Scaling to use scheduled scaling.
- B. Configure an Amazon Simple Queue Service (Amazon SQS) queue as a destination for the jobs. Implement the compute nodes with Amazon EC2 instances that are managed in an Auto Scaling group. Configure EC2 Auto Scaling based on the size of the queue.
- C. Implement the primary server and the compute nodes with Amazon EC2 instances that are managed in an Auto Scaling group. Configure AWS CloudTrail as a destination for the jobs. Configure EC2 Auto Scaling based on the load on the primary server.
- D. Implement the primary server and the compute nodes with Amazon EC2 instances that are managed in an Auto Scaling group. Configure Amazon EventBridge (Amazon CloudWatch Events) as a destination for the jobs. Configure EC2 Auto Scaling based on the load on the compute nodes.

Answer(s): B

9. A company is running an SMB file server in its data center. The file server stores large files that are accessed frequently for the first few days after the files are created. After 7 days the files are rarely accessed.

The total data size is increasing and is close to the company's total storage capacity. A solutions architect must increase the company's available storage space without losing low-latency access to the most recently accessed files. The solutions architect must also provide file lifecycle management to avoid future storage issues.

Which solution will meet these requirements?

- A. Use AWS DataSync to copy data that is older than 7 days from the SMB file server to AWS.
- B. Create an Amazon S3 File Gateway to extend the company's storage space. Create an S3 Lifecycle policy to transition the data to S3 Glacier Deep Archive after 7 days.
- C. Create an Amazon FSx for Windows File Server file system to extend the company's storage space.
- D. Install a utility on each user's computer to access Amazon S3. Create an S3 Lifecycle policy to transition the data to S3 Glacier Flexible Retrieval after 7 days.

Answer(s): B

- **10.** A company is building an ecommerce web application on AWS. The application sends information about new orders to an Amazon API Gateway REST API to process. The company wants to ensure that orders are processed in the order that they are received. Which solution will meet these requirements?
 - A. Use an API Gateway integration to publish a message to an Amazon Simple Notification Service (Amazon SNS) topic when the application receives an order. Subscribe an AWS Lambda function to the topic to perform processing.
 - B. Use an API Gateway integration to send a message to an Amazon Simple Queue Service (Amazon SQS) FIFO queue when the application receives an order. Configure the SQS FIFO queue to invoke an AWS Lambda function for processing.
 - C. Use an API Gateway authorizer to block any requests while the application processes an order.
 - D. Use an API Gateway integration to send a message to an Amazon Simple Queue Service (Amazon SQS) standard queue when the application receives an order. Configure the SQS standard queue to invoke an AWS Lambda function for processing.

Answer(s): B

11. A company has an application that runs on Amazon EC2 instances and uses an Amazon Aurora database. The EC2 instances connect to the database by using user names and passwords that are stored locally in a file. The company wants to minimize the operational overhead of credential management.

What should a solutions architect do to accomplish this goal?

- A. Use AWS Secrets Manager. Turn on automatic rotation.
- B. Use AWS Systems Manager Parameter Store. Turn on automatic rotation.
- C. Create an Amazon S3 bucket to store objects that are encrypted with an AWS Key Management Service (AWS KMS) encryption key. Migrate the credential file to the S3 bucket. Point the application to the S3 bucket.
- D. Create an encrypted Amazon Elastic Block Store (Amazon EBS) volume for each EC2 instance. Attach the new EBS volume to each EC2 instance. Migrate the credential file to the new EBS volume. Point the application to the new EBS volume.

12. A global company hosts its web application on Amazon EC2 instances behind an Application Load Balancer (ALB). The web application has static data and dynamic data. The company stores its static data in an Amazon S3 bucket. The company wants to improve performance and reduce latency for the static data and dynamic data. The company is using its own domain name registered with Amazon Route 53.

What should a solutions architect do to meet these requirements?

- A. Create an Amazon CloudFront distribution that has the S3 bucket and the ALB as origins. Configure Route 53 to route traffic to the CloudFront distribution.
- B. Create an Amazon CloudFront distribution that has the ALB as an origin. Create an AWS Global Accelerator standard accelerator that has the S3 bucket as an endpoint Configure Route 53 to route traffic to the CloudFront distribution.
- C. Create an Amazon CloudFront distribution that has the S3 bucket as an origin. Create an AWS Global Accelerator standard accelerator that has the ALB and the CloudFront distribution as endpoints. Create a custom domain name that points to the accelerator DNS name. Use the custom domain name as an endpoint for the web application.
- D. Create an Amazon CloudFront distribution that has the ALB as an origin. Create an AWS Global Accelerator standard accelerator that has the S3 bucket as an endpoint. Create two domain names. Point one domain name to the CloudFront DNS name for dynamic content. Point the other domain name to the accelerator DNS name for static content. Use the domain names as endpoints for the web application.

Answer(s): A

13. A company performs monthly maintenance on its AWS infrastructure. During these maintenance activities, the company needs to rotate the credentials for its Amazon RDS for MySQL databases across multiple AWS Regions.

Which solution will meet these requirements with the LEAST operational overhead?

- A. Store the credentials as secrets in AWS Secrets Manager. Use multi-Region secret replication for the required Regions. Configure Secrets Manager to rotate the secrets on a schedule.
- B. Store the credentials as secrets in AWS Systems Manager by creating a secure string parameter. Use multi-Region secret replication for the required Regions. Configure Systems Manager to rotate the secrets on a schedule.
- C. Store the credentials in an Amazon S3 bucket that has server-side encryption (SSE) enabled. Use Amazon EventBridge (Amazon CloudWatch Events) to invoke an AWS Lambda function to rotate the

credentials.

D. Encrypt the credentials as secrets by using AWS Key Management Service (AWS KMS) multi-Region customer managed keys. Store the secrets in an Amazon DynamoDB global table. Use an AWS Lambda function to retrieve the secrets from DynamoDB. Use the RDS API to rotate the secrets.

Answer(s): A

14. A company runs an ecommerce application on Amazon EC2 instances behind an Application Load Balancer. The instances run in an Amazon EC2 Auto Scaling group across multiple Availability Zones. The Auto Scaling group scales based on CPU utilization metrics. The ecommerce application stores the transaction data in a MySQL 8.0 database that is hosted on a large EC2 instance.

The database's performance degrades quickly as application load increases. The application handles more read requests than write transactions. The company wants a solution that will automatically scale the database to meet the demand of unpredictable read workloads while maintaining high availability.

Which solution will meet these requirements?

- A. Use Amazon Redshift with a single node for leader and compute functionality.
- B. Use Amazon RDS with a Single-AZ deployment. Configure Amazon RDS to add reader instances in a different Availability Zone.
- C. Use Amazon Aurora with a Multi-AZ deployment. Configure Aurora Auto Scaling with Aurora Replicas.
- D. Use Amazon ElastiCache for Memcached with EC2 Spot Instances.

Answer(s): C

15. A company recently migrated to AWS and wants to implement a solution to protect the traffic that flows in and out of the production VPC. The company had an inspection server in its onpremises data center. The inspection server performed specific operations such as traffic flow inspection and traffic filtering. The company wants to have the same functionalities in the AWS Cloud.

Which solution will meet these requirements?

A. Use Amazon GuardDuty for traffic inspection and traffic filtering in the production VPC.

- B. Use Traffic Mirroring to mirror traffic from the production VPC for traffic inspection and filtering.
- C. Use AWS Network Firewall to create the required rules for traffic inspection and traffic filtering for the production VP
- D. Use AWS Firewall Manager to create the required rules for traffic inspection and traffic filtering for the production VPC.

Answer(s): C

16. A company hosts a data lake on AWS. The data lake consists of data in Amazon S3 and Amazon RDS for PostgreSQL. The company needs a reporting solution that provides data visualization and includes all the data sources within the data lake. Only the company's management team should have full access to all the visualizations. The rest of the company should have only limited access.

Which solution will meet these requirements?

- A. Create an analysis in Amazon QuickSight. Connect all the data sources and create new datasets. Publish dashboards to visualize the data. Share the dashboards with the appropriate IAM roles.
- B. Create an analysis in Amazon QuickSight. Connect all the data sources and create new datasets. Publish dashboards to visualize the data. Share the dashboards with the appropriate users and groups.
- C. Create an AWS Glue table and crawler for the data in Amazon S3. Create an AWS Glue extract, transform, and load (ETL) job to produce reports. Publish the reports to Amazon S3. Use S3 bucket policies to limit access to the reports.
- D. Create an AWS Glue table and crawler for the data in Amazon S3. Use Amazon Athena Federated Query to access data within Amazon RDS for PostgreSQL. Generate reports by using Amazon Athena. Publish the reports to Amazon S3. Use S3 bucket policies to limit access to the reports.

Answer(s): B

17. A company is implementing a new business application. The application runs on two Amazon EC2 instances and uses an Amazon S3 bucket for document storage. A solutions architect needs to ensure that the EC2 instances can access the S3 bucket.

What should the solutions architect do to meet this requirement?

A. Create an IAM role that grants access to the S3 bucket. Attach the role to the EC2 instances.	
B. Create an IAM policy that grants access to the S3 bucket. Attach the policy to the EC2 instances.	
C. Create an IAM group that grants access to the S3 bucket. Attach the group to the EC2 instances.	
D. Create an IAM user that grants access to the S3 bucket. Attach the user account to the EC2 instances.	
Answer(s): A	
small micro with a bucke A solu proce	In application development team is designing a microservice that will convert large images to er, compressed images. When a user uploads an image through the web interface, the eservice should store the image in an Amazon S3 bucket, process and compress the image an AWS Lambda function, and store the image in its compressed form in a different S3 et. Lettions architect needs to design a solution that uses durable, stateless components to ess the images automatically. The combination of actions will meet these requirements? (Choose two.)
	A. Create an Amazon Simple Queue Service (Amazon SQS) queue. Configure the S3 bucket to send a notification to the SQS queue when an image is uploaded to the S3 bucket.
	B. Configure the Lambda function to use the Amazon Simple Queue Service (Amazon SQS) queue as the invocation source. When the SQS message is successfully processed, delete the message in the queue.
	C. Configure the Lambda function to monitor the S3 bucket for new uploads. When an uploaded image is detected, write the file name to a text file in memory and use the text file to keep track of the images that were processed.
	D. Launch an Amazon EC2 instance to monitor an Amazon Simple Queue Service (Amazon SQS) queue. When items are added to the queue, log the file name in a text file on the EC2 instance and invoke the Lambda function.
	E. Configure an Amazon EventBridge (Amazon CloudWatch Events) event to monitor the S3 bucket. When an image is uploaded, send an alert to an Amazon ample Notification Service (Amazon SNS) topic with the application owner's email address for further processing.

19. A company has a three-tier web application that is deployed on AWS. The web servers are deployed in a public subnet in a VPC. The application servers and database servers are deployed in private subnets in the same VPC. The company has deployed a third-party virtual firewall appliance from AWS Marketplace in an inspection VPC. The appliance is configured with an IP interface that can accept IP packets.

A solutions architect needs to integrate the web application with the appliance to inspect all traffic to the application before the traffic reaches the web server.

Which solution will meet these requirements with the LEAST operational overhead?

- A. Create a Network Load Balancer in the public subnet of the application's VPC to route the traffic to the appliance for packet inspection.
- B. Create an Application Load Balancer in the public subnet of the application's VPC to route the traffic to the appliance for packet inspection.
- C. Deploy a transit gateway in the inspection VP Configure route tables to route the incoming packets through the transit gateway.
- D. Deploy a Gateway Load Balancer in the inspection VPC. Create a Gateway Load Balancer endpoint to receive the incoming packets and forward the packets to the appliance.

Answer(s): D

20. A company wants to improve its ability to clone large amounts of production data into a test environment in the same AWS Region. The data is stored in Amazon EC2 instances on Amazon Elastic Block Store (Amazon EBS) volumes. Modifications to the cloned data must not affect the production environment. The software that accesses this data requires consistently high I/O performance.

A solutions architect needs to minimize the time that is required to clone the production data into the test environment.

Which solution will meet these requirements?

- A. Take EBS snapshots of the production EBS volumes. Restore the snapshots onto EC2 instance store volumes in the test environment.
- B. Configure the production EBS volumes to use the EBS Multi-Attach feature. Take EBS snapshots of the production EBS volumes. Attach the production EBS volumes to the EC2 instances in the test environment.

- C. Take EBS snapshots of the production EBS volumes. Create and initialize new EBS volumes. Attach the new EBS volumes to EC2 instances in the test environment before restoring the volumes from the production EBS snapshots.
- D. Take EBS snapshots of the production EBS volumes. Turn on the EBS fast snapshot restore feature on the EBS snapshots. Restore the snapshots into new EBS volumes. Attach the new EBS volumes to EC2 instances in the test environment.

Answer(s): D