NetApp Certified Implementation Engineer (NS0-194)

1. For security reasons, you must track the access of files of a specific folder. In this scenario, what should

you do to accomplish this task from the storage side?
A. Implement a Vscan solution.
B. Use a cron job to save the audit log.
C. Use role-based access control to track access.
D. Implement an FPolicy solution.
Answer(s): D
2. You need to provide a customer an action plan to update an ONTAP system after a security bulletin has been issued. In this scenario, how do you accomplish this task?
A. Use the Interoperability Matrix Tool.
B. Review the ONTAP 9 product page.
C. Download the target version and do a pre-check.
D. Use Upgrade Advisor on Active IQ.
Answer(s): C
3. What is the minimum number of compute nodes required to run the NetApp Deployment Engine for NetApp HCI?
A. 2
B. 1
C. 3

Answer(s): A	Ą									
4. Which Net to Cloud Volu			-	ou to perfo	rm block-bas	ed replica	tion from Net	App Element	t software)
A. SyncMirro	r									
B. SnapMirro	or									
C. Cloud Syr	nc									
D. MetroClus	ster									
Answer(s): E	3									
5. Referring t	o the e	xhibit, v	which two c	omponents	should be ex	amined?	(Choose two.))		
Workload		ID	Latency	Network	Cluster	Data	Disk		NVRAM	Clou
-total-			110.35ms	327.00us	327.00us	0ms				
110.02ms	0ms		Oms	0ms		180005				
110.02ms vslvol0		111		0ms 603.00us	327.00us	Oms				
110.02ms vs1vol0 167.22ms vol1	0ms	111 1234	0ms 167.82ms	0ms		180005				
110.02ms vslvol0 167.22ms vol1 117.56ms		1234	0ms 167.82ms 0ms 117.76ms 0ms	0ms 603.00us 0ms 191.00us 0ms	603.00us	Oms	44 O5ma	0==	0==0	0
110.02ms vslvol0 167.22ms vol1 117.56ms vol2	0ms		0ms 167.82ms 0ms 117.76ms	0ms 603.00us 0ms 191.00us	603.00us	Oms	44.05ms	Oms	Oms	Om
110.02ms vslvol0 167.22ms vol1 117.56ms	0ms	1234 999 -	0ms 167.82ms 0ms 117.76ms 0ms 44.24ms	0ms 603.00us 0ms 191.00us 0ms	603.00us	Oms	44.05ms Oms	Oms Oms	Oms	Om
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2	0ms	1234 999 - 00us 999	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms	Oms 603.00us Oms 191.00us Oms 190.00us Oms 266.00us	603.00us 191.00us 190.00us 38.63ms 266.00us	Oms Oms Oms	0ms 64.20ms	0ms 0ms	0ms	Om
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2 vol1	0ms	1234 999 - 00us 999 1234	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms	Oms 603.00us Oms 191.00us Oms 190.00us Oms 266.00us 253.00us	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us	Oms Oms Oms Oms Oms	0ms 64.20ms 27.03ms	Oms Oms	Oms Oms	Om Om
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2 vol1 vslvol0	0ms	1234 999 - 00us 999	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms	Oms 603.00us Oms 191.00us Oms 190.00us Oms 266.00us	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us	Oms Oms Oms	0ms 64.20ms	0ms 0ms	0ms	0n 0n
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2 vol1 vslvol0 -total- 409.65ms	0ms	1234 999 - 00us 999 1234 111	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms 23.72ms 409.81ms Oms	Oms 603.00us 0ms 191.00us 0ms 190.00us Oms 266.00us 253.00us 249.00us 169.00us 0ms	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us 169.00us	Oms Oms Oms Oms Oms Oms Oms	0ms 64.20ms 27.03ms	Oms Oms	Oms Oms	0n 0n
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2 vol1 vslvol0 -total- 409.65ms vol1	0ms 0ms 256.	1234 999 - 00us 999 1234	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms 23.72ms 409.81ms Oms 816.92ms	Oms 603.00us 0ms 191.00us 0ms 190.00us 0ms 266.00us 253.00us 249.00us 169.00us 0ms 120.00us	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us	Oms Oms Oms Oms Oms Oms	0ms 64.20ms 27.03ms	Oms Oms	Oms Oms	Om Om
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2 vol1 vslvol0 -total- 409.65ms vol1 816.80ms	0ms 0ms 256.	1234 999 - 00us 999 1234 111 -	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms 23.72ms 409.81ms Oms	Oms 603.00us 0ms 191.00us 0ms 190.00us 0ms 266.00us 253.00us 249.00us 169.00us 0ms 120.00us 0ms	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us 169.00us	Oms Oms Oms Oms Oms Oms Oms Oms	0ms 64.20ms 27.03ms	Oms Oms	Oms Oms	Om Om
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2 vol1 vslvol0 -total- 409.65ms vol1 816.80ms vol2	0ms 0ms 256.	1234 999 - 00us 999 1234 111	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms 23.72ms 409.81ms Oms 816.92ms Oms 407.88ms Oms	Oms 603.00us 0ms 191.00us 0ms 190.00us 0ms 266.00us 253.00us 249.00us 169.00us 0ms 120.00us	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us 169.00us	Oms Oms Oms Oms Oms Oms Oms	0ms 64.20ms 27.03ms	Oms Oms	Oms Oms	Om Om
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2 vol1 vslvol0 -total- 409.65ms vol1	Oms 256. Oms	1234 999 - 00us 999 1234 111 -	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms 23.72ms 409.81ms Oms 816.92ms Oms 407.88ms	Oms 603.00us 0ms 191.00us 0ms 190.00us 0ms 266.00us 253.00us 249.00us 169.00us 0ms 120.00us 0ms 219.00us	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us 169.00us	Oms Oms Oms Oms Oms Oms Oms Oms	0ms 64.20ms 27.03ms	Oms Oms	Oms Oms	On On
110.02ms vslvol0 167.22ms vol1 117.56ms vol2 -total- 38.89ms vol2 vol1 vslvol0 -total- 409.65ms vol1 816.80ms vol2 407.66ms	Oms 256. Oms Oms Oms	1234 999 -00us 999 1234 111 - 1234 999 111	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms 23.72ms 409.81ms Oms 816.92ms Oms 407.88ms Oms	Oms 603.00us 0ms 191.00us 0ms 190.00us 0ms 266.00us 253.00us 249.00us 0ms 120.00us 0ms 219.00us 0ms	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us 169.00us 120.00us	Oms Oms Oms Oms Oms Oms Oms Oms Oms	Oms 64.20ms 27.03ms 23.47ms	Oms Oms Oms	Oms Oms Oms	Om Om Om
110.02ms vs1vo10 167.22ms vo11 117.56ms vo12 -total- 38.89ms vo12 vo11 vs1vo10 -total- 409.65ms vo11 816.80ms vo12 407.66ms vs1vo10	Oms 256. Oms Oms Oms	1234 999 -00us 999 1234 111 - 1234 999 111	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms 23.72ms 409.81ms Oms 816.92ms Oms 407.88ms Oms	Oms 603.00us 0ms 191.00us 0ms 190.00us 0ms 266.00us 253.00us 249.00us 0ms 120.00us 0ms 219.00us 0ms	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us 169.00us 120.00us	Oms Oms Oms Oms Oms Oms Oms Oms Oms	Oms 64.20ms 27.03ms 23.47ms	Oms Oms Oms	Oms Oms Oms	On On
110.02ms vs1vo10 167.22ms vo11 117.56ms vo12 -total- 38.89ms vo12 vo11 vs1vo10 -total- 409.65ms vo11 816.80ms vo12 407.66ms vs1vo10 A. cluste	Oms 256. Oms Oms Oms er switch	1234 999 -00us 999 1234 111 -1234 999 111	Oms 167.82ms Oms 117.76ms Oms 44.24ms 256.00us 64.47ms 27.28ms 23.72ms 409.81ms Oms 0ms 407.88ms Oms 3.68ms	Oms 603.00us 0ms 191.00us 0ms 190.00us 0ms 266.00us 253.00us 249.00us 0ms 120.00us 0ms 219.00us 0ms	603.00us 191.00us 190.00us 38.63ms 266.00us 253.00us 249.00us 169.00us 120.00us	Oms Oms Oms Oms Oms Oms Oms Oms Oms	Oms 64.20ms 27.03ms 23.47ms	Oms Oms Oms	Oms Oms Oms	Om Om

6. What are two reasons to use VLANs in a NetApp storage solution? (Choose two.)
☐ A. to isolate UDP traffic from TCP traffic
☐ B. to isolate management traffic from other IP traffic
☐ C. to isolate iSCSI traffic from NAS traffic
☐ D. to isolate FC traffic from other IP traffic
Answer(s): A C
7. Which CIFS server configuration determines the domain controllers that a CIFS server uses?
A. site membership
B. enabled SMB versions
C. trusted domains
D. discovery mode
Answer(s): A
8. Which three techniques are used in ONTAP to improve storage efficiencies? (Choose three.)
☐ A. compression
☐ B. encryption
☐ C. compaction
□ D. ADP
☐ E. thin provisioning
Answer(s): A C E

9. You are working on a fabric MetroCluster. After a site failure, the plex starts to resync automatically to the aggregate mirror of Aggr1. The plex now shows a status of resyncing. During this process, you experience a

In this scenario, how do you solve the problem?
A. Add more disks to the aggregate to add more I/O capacity.
B. Destroy and re-create plex, then run a baseline sync.
C. Tune the resync speed by adding a QoS policy and limit the concurrent I/O to the aggregate.
D. Tune the resync speed using the storage raid-options command.
Answer(s): C
10. When you replace a motherboard, which step will completely test the newly installed component?
A. From ONTAP, execute sldiag.
B. From the LOADER prompt, type boot_ontap maint, then execute sldiag.
C. From the LOADER prompt, type boot_diags, then execute sldiag.
D. From the LOADER prompt, execute sldiag.
Answer(s): B
11. A disaster causes a FlexGroup volume to be unrecoverable, but it was protected by a SnapMirror relationship. You solve the issue, and the source is operational. Now, you want to return to serving the data from the original source. In this scenario, what do you do next?
A. Initialize the SnapMirror relationship.
B. Restore data from a backup copy.
C. Perform a SnapMirror update.
D. Delete the SnapMirror relationship.
Answer(s): A
12. Which type of MetroCluster is shown in the exhibit?

slow resync of the SyncMirror plex.

A. 2-node stretch	n MetroCl	uster						
B. 4-node Metro	Cluster IF)						
C. 4-node Fabric	c-Attache	d MetroClust	er					
D. 4-node stretch	n MetroC	luster						
inswer(s): C								
3. You have de o you use to de					-	_	s. In this s	scenario, what
A. NetApp Active	e IQ							
B. Interoperabilit	y Matrix 1	ГооІ						
C. NetApp Docu	mentatior	n Center						
D. Hardware Uni	iverse							
nswer(s): D								
4. You have an lower than you ommand.	expecte	d. You run t	he same te	est again, b	ut this time y	ou monitor the	he storage	e using a QoS
est-wid1234 est-wid1234 est-wid1234	1234	11.92ms	73.00us	73.00us	143.00us	3.07ms	0ms	8.62ms
eferring to the	exhibit, v	what is the p	oroblem?					
A. There is a dis	k bottlene	eck.						
B. An HA interco	nnect pro	blem is pres	ent.					
C. The SMB read	d sizes sh	nould be incr	eased.					
D. The NVRAM I	needs to	be replaced.						
inswer(s): B								

needs to remain online. In this scenario, what should you do to bring down a single node?
A. Perform an HA takeover of the node.
B. Perform a MetroCluster switchover.
C. Disable HA on each side of the MetroCluster.
D. Perform an aggregate relocation of the CFO aggregates on the node.
Answer(s): A
16. What is the consequence of a loss of connectivity between a Cloud Volumes ONTAP (CVO) instance and Cloud Manager for four or more days?
A. The CVO instance sends an AutoSupport message.
B. The CVO instance must be added back manually to Cloud Manager.
C. Cloud Manager removes the CVO instance from its inventory.
D. The CVO instance is stopped.
Answer(s): C
17. What are two conditions that would cause writes in memory to be written to disk? (Choose two.)
☐ A. The NVRAM (NVLog) fills up.
☐ B. A user presses "Save".
☐ C. Drive capacity becomes available.
☐ D. A Snapshot copy is taken.
Answer(s): A B
18. How many drive bays does a DS4246 shelf have?

15. You have a 4-node MetroCluster system. A node needs to be taken down for maintenance, but all data

A. 42
B. 12
C. 46
D. 24
Answer(s): D
19. On an AFF system, which three storage efficiencies are enabled by default? (Choose three.)
☐ A. reallocation
☐ B. compaction
C. deduplication
☐ D. compression
☐ E. encryption
Answer(s): B C D
20. You received the "CLUSTER ERROR: DISK/SHELF COUNT MISMATCH" AutoSupport message from an ONTAP cluster. When analyzing this message, which two should be inspected? (Choose two.)
☐ A. drive paths
☐ B. IOM firmware
☐ C. drive firmware
☐ D. SAS cabling
Answer(s): A C